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Executive Summary

A Railway Traffic Management problem can be defined as forecasting fu-
ture progression of trains, identifying conflicts where two or more trains
compete for available infrastructure, investigating options for resolution
of conflicts, re-planning train schedules to minimise the impact on sy-
stem performance. Performance management of complex networks is a
problem common to a number of industries and applications. There has
been much work over many decades on modelling the generation and
optimisation of railway timetables. Much of this focuses on relatively
simple railways and services and is therefore quite straightforward. Main
line railways have a number of features that introduce significant com-
plexity. Traditionally the problem of re-planning a timetable in near real
time to manage and recover from service perturbations and disruption is
simplified to help arrive at a solution in an acceptable amount of time,
but this then can have unintended consequences which can amplify rat-
her than reduce the disruption in the network. Resonate are interested
in looking at different strategies / models / techniques for dealing with
the problem, the likely strengths and risks of these, and how they might
be adapted to improve existing solutions. The study group participants
undertook a brief survey of recent literature on modelling train delays
and found machine learning approaches, network models and a statisti-
cal approach to defining the efficiency of a station in dissipating delays
which are worthy of further consideration. We then explored total of
nine modelling approaches during the study group. The approaches
fell broadly into two groups: those that sought to understand the pro-
pagation of delays (Approaches 1 to 6) and those that sought to offer
strategies for minimising delays (Approaches 8 and 9). Approach 7 pro-
poses a way of understanding the propagation of delays and using that
to evaluate candidate policy decisions. There are a number of promising
approaches here which provide useful lines of enquiry, many suitable for
expansion beyond the simple railways modelled, to include variable train
speeds, junctions and intersections, temporal differences in usage, such
as tidal flows in and out of cities, and resource constraints.
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1 Introduction

(1.1) There has been much work over many decades on modelling the generation
and optimisation of railway timetables. Much of this focuses on relatively
simple railways and services and is therefore quite straightforward. Main line
railways have a number of features that introduce significant complexity:

• Routes with many junctions and intersections

• Variable train speeds

• Variable train stopping patterns

• Mixed passenger and freight traffic

• Peak patterns / off peak patterns

• Tidal flows in and out of cities for the working day

• Constraints from resources (trains and crew)

As the volume of traffic in the system increases, the effect of perturbations in the
actual progress of trains can introduce unstable behaviour that provides significant
challenge for the compromise between performance and capacity. Traffic manage-
ment systems are therefore needed to forecast the likely future progress of trains,
identify conflicts, and modify the planned schedule of trains to minimise the re-
sulting disruption and accelerate recovery back to the planned service.

Resonate is a technology company specialising in rail and connected transport so-
lutions. We have a powerful platform and an excellent team that is helping us to
support numerous elements of the Digital Railway initiative being driven by Net-
work Rail and the DfT. We are also working hard to help deliver intelligent traffic
management and smarter cities internationally. We have over 50 years of rail in-
dustry experience and used to be the research division of British Rail before being
privatised in 1996. Our understanding spans safety critical signalling control, rail
operations management, logistics and IT. We have combined our rail background
knowledge with agile development methods, data gathering, advanced algorithms
and the latest cloud computing, so that we have the tools to deliver 21st century
traffic management.

In 2016 we changed our name from DeltaRail to Resonate in recognition of the
fact that we are entering a new and demanding age of connected and intelligent
transport. We have embarked on a drive to maximise capacity and performance
through predictive intelligence, shared data, joined up travel and informed customer
journeys.
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2 Problem statement

(2.1) A Railway Traffic Management problem can be defined as:

• Forecasting future progression of trains

• Identifying conflicts where two or more trains compete for available infrastruc-
ture

• Investigating options for resolution of conflicts

• Re-planning train schedules to minimise the impact on system performance

Traditionally the problem of re-planning a timetable in near real time to manage
and recover from service perturbations and disruption is simplified to help arrive
at a solution in an acceptable amount of time, but this then can have unintended
consequences which can amplify rather than reduce the disruption. We would be
interested to look at different strategies / models / techniques for dealing with the
problem, the likely strengths and risks of these, and how they might be adapted
to improve existing solutions. Performance management of complex networks is
a problem common to a number of industries and applications and therefore it is
likely that approaches already exist that could be adapted for use in rail. Detailed
data on planned and actual services over many months is available to support the
workshop.

Constraints

A number of constraints can complicate the timetable optimisation and have a
significant impact on the robustness of a solution:

• Availability of infrastructure – typically during disruption, the level of in-
frastructure available is reduced, either by a failure of the equipment, or a
blockage caused by train failures or human intervention.

• Availability of rolling stock (their location, and the fact that there are vari-
ous different types of train, with differing requirements for maintenance and
capacity)

• Availability of staff (location, ability to drive certain trains & routes, shift
hours).

Costs & Benefits

The primary benefit of improved railway performance is of course to the passengers,
freight operators and the UK economy. In addition to this:

• The Rail Regulator can fine Network Rail for failure to meet performance
targets – the last fine was £53m in July 2014.

• There is a delay attribution regime in place between Network Rail and Train
Operators where the originators of delay pay compensation to those who suffer
delay – typically £100m can change hands across the industry in a year.

2
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• There are additional costs for reimbursing customers for delays or reduced
services.

• Customer service is important, often measured indirectly through the number
of trains calling at each station compared to planned operation.

There is therefore also a good business case for minimising train delays

3 The solution

(3.0.2) We undertook a brief survey of recent literature on modelling train delays
and found machine learning approaches, network models and a statistical
approach to defining the efficiency of a station with respect to delays.
We explored total of nine distinct modelling approaches during the study
group and The approaches fell broadly into two groups: those that sought
to understand the propagation of delays (Approaches 1 to 6) and those
that sought to offer strategies for minimising delays (Approaches 8 and 9).
Approach 7 proposes a way of understanding the propagation of delays
and using that to evaluate candidate policy decisions.

3.1 Approaches in Literature

(3.1.1) Literature Primary delays are caused by unexpected stochastic events
in the system (e.g. technical faults, prolonged alighting/boarding times,
adverse weather conditions etc.); these can have a knock-on effect to cre-
ate secondary delays on other services. The propagation of primary delays
depends significantly on railway timetabling and infrastructure and they
can have an impact on services both spatially and temporally far from
the origin. This makes the prediction of secondary delay challenging, but
numerous approaches have been considered in recent literature. An over-
view of recovery models and algorithms for real-time railway rescheduling
can be found in [9]. Rescheduling models for railway traffic management
in large-scale networks can be found in [10].These papers above contain a
great many references to other relevant literature.

(3.1.2) Modelling train delays with q-exponential functions is used in [11] to
provide an efficiency score for each station. q-exponentials are defined as
eq(x) = (1+(1−q)x)1/(1−q), where q is a real parameter, the entropic index.
These model complex systems with fat-tailed distributions. Briggs et al.
collected most recent delay data on over two million train departures at 23
major stations between September 2005 and October 2006, including over
200,000 departures for Manchester Piccadilly, one of the busy stations.
Using the model eq,b,c(t) = c(1− b(q− 1)t)1/(1−q), they estimated the para-
meters using nonlinear least squares. Then q measures the deviation from

3
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an exponential distribution , so an estimated q larger than unity indicates
a long-tailed distribution. 80% of the trains recorded t = 0 indicating a
delay of less than 1 minute, so this model represents the conditional pro-
bability of delay given the train is delayed 1 minute or more. Assuming
the waiting time distribution is given by a Poisson process P (t|β) = βe−βt,
allowing β to fluctuate to describe the temporal variations in the rail net-
work due to weather, holidays, signal failures etc., the degrees of freedom
in the model. When β is small, delays are more frequent. From the model,
the average contribution of each degree of freedom is estimated form the
fitted value of b, giving a statistic 〈χ2

i 〉 = 1
2
(q − 1)b which is laarge when

a local station is doing well, i.e. the local exponential decay of the delay
times is as fast as it can be. Stations with the same q (external degrees of
freedom in the network) can usefully be compared. This analysis showed
that Cambridge ans Edinburgh were the best performing busy stations
under this criterion.

(3.1.3) Data Mining Recent advances in data mining and machine learning
techniques have enabled the efficient analysis of large data sets for accu-
rate prediction. Several instances of applications of these techniques to
train delay can be found in literature. [12] use support vector regres-
sion to identify the relationship between various system characteristics
and train delay; [14]use artificial neural networks to predict delay, achie-
ving high accuracy in an application to Iranian railways. A major flaw
in these approaches for our application can be the computational time re-
quired for the analysis of very large data sets; [13] propose a fast learning
algorithm based on the ‘Extreme Learning Machine’, which can extract
relevant information quickly to make accurate predictions about future
network states, they show the method can improve the current prediction
systems implemented in Italian railway networks.

(3.1.4) Petri Nets Petri nets (after Carl Adam Petri) are modifications of simple
network models, often used in the modelling of discrete distributed sys-
tems and in particular, more recently, railway networks. A Petri net is a
bipartite graph, with directed edges between two sets of nodes: transitions
(representing events like arrivals or departures of trains from track stret-
ches or stations) and places (representing activities like travelling from one
track stretch to another or conditions like waiting for passengers to change
trains). The dynamics is modelled by the movements of tokens through
the places, representing events like arrivals and departures of trains. To-
kens travel through the Petri net via enabled transitions. Trains can be
represented by (coloured = distinguishable) tokens, other types of tokens
can be used to model capacity restrictions (for example maximal number
of tracks in a station) or to realise train interconnections. A very under-
standable introduction into Petri nets and their modelling of train service
intention and scheduling can be found in Chapters 5.1-5.3 of [15]. This
PhD thesis introduces a measure of capacity of station regions as well as

4



Resolving train delays ESGI130

Figure 1: A simple High-level Petri nets (HLPNs) representation created using PIPE. Circular
and rectangular nodes represent places and transitions respectively. In this model, two types of
train are included, ’fast’ red tokens, and ’slow’ blue tokens. This image illustrates implementation
in one of several software packages available, and widely used, for these problems.

for stability of a timetable and is openly accessible at

https://www.research-collection.ethz.ch/bitstream/handle/

20.500.11850/46806/eth-28137-02.pdf

(3.1.1) When additional values and parameters are included, specification of mul-
tiple token characteristics for example, such structures are referred to as
high-level Petri nets (HLPNs), see Figure 1. A simple HLPN created using
PIPE. Circular and rectangular nodes represent places and transitions re-
spectively. In this model, two types of train are included, ‘fast’ red tokens,
and ‘slow’ blue tokens. This image illustrates implementation in one of
several software packages available, and widely used, for these problems:

https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html

There is a substantial amount of literature of railway simulation using petri nets.
Here is a selection of papers concerned with this topic. Articles dealing with safety
aspects: [27], [16]. An article dealing with conflict forecasting and delay minimisa-
tion: [17].Articles dealing with train scheduling and its optimisation: [18], [19], [20],
[21]. Several articles have focussed on ‘on-the-fly’ responses to a primary delay, a
small selection of which are provided here: [25], Inputs to a discrete Petri net mo-
del are ‘fuzzified’ to create a probabilistic prediction of delay propagation; Success
is shown from testing the model on part of the Belgrade railway node. [22], [23]
similarly model delay propagation probabilistically by considering stochastic Petri
nets., [24], [26].

(3.1.1) HLPNs have been used as models of railway networks for multiple purpo-
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ses, a large body of the literature focuses on optimisation of timetabling,
which occurs several months ahead of dispatch. Several studies however
have focused on ’on-the-fly’ responses to a primary delay, a small selection
are provided here. Milinkovic et al. (2013) ‘fuzzify’ the inputs to a discrete
Petri net model to create a probabilistic prediction of delay propagation.
They show success from testing the model on part of the Belgrade railway
node. Caetano and Teixeira (2014) similarly model delay propagation pro-
babilistically by considering stochastic Petri nets. [24] build a prototype
tool for identification of conflicts and estimation of knock-on delay, tested,
with success, on the Dutch railway network.

3.2 Approach 1: Toy model

(3.2.1) The idea is to create a very simple model in order to simulate a train line
at the tactical level. We build a exclusive interacting particle system on a
network which represents the line.

(3.2.2) The network is made of three fundamental components:
Straight : this is a pieces of track included between two signals. For the
purpose of the simulation, the time step is the time needed for a train to
move from one berth to the following, and it set at 2 minutes. The time a
train stops at a station is also set at 2 minutes. Trains may only proceed
to the next node if the next node is not occupied by another train.
Split : this is a berth followed by a signal that involves a decision to send
the train to one of n possible following berths. In the network we consi-
der here, n = 2 always; In reality, this is realistic because points/switches
on the railway can only take two positions. More complex junctions are
achieved by having sets of points in series.
Join: this is a berth preceded by a signal that involves the decision is to
allow one of the trains on the previous n = 2 berths to proceed to the next
one and stop all the others.

(3.2.3) Using these simple components other structures can be built :
Station: this is a combination of a split, n = 2 straights, and a join;
Overtake track : this is similar to a station, but between the split and
the join, the two tracks have a different number of straights. We are not
considering this structure in our simple model since overtaking can also
happen in a station.Figure 2 shows all the fundamental components of the
network and the sample train network that we will use for our simulations.

(3.2.4) Important remarks: For coding purposes, in the network above berths are
represented by nodes. Signals are at the end of nodes, as they would in a
a real berth. We consider two different kinds of trains:
Fast trains : scheduled to go from (1) or (2) to (17) without stopping at

6
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Figure 2: Fundamental components of the network and the sample train network used for
simulations.
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the stations;
Slow trains : scheduled to stop at every station.
In our model, stations correspond to the sets of berths (5,6), (10,11), and
(14,16). In our model, both types of trains move at the same speed and
fast trains have priority at splits and joins; this reflect the fact that, often,
the speed of a train is constrained by the maximum speed permissible on
the track, rather than by its intrinsic speed limit. Moreover we assume
that any berth has the same length. Other kinds of trains could be added
to the model later. For example, one could consider trains which only stop
at the station (10,11).

(3.2.5) How does the model work? Trains are injected in nodes (1) or (2). For
now the frequency is fixed, depending of how much we want to saturate
the network. We assume that trains in node (17) always disappear. The
directed network is given as an adjacency matrix. Then it is necessary
to assign transition probabilities to each berth, i.e. applying a transition
matrix to the whole system. The transition matrix is different at every
time step and needs to be recalculated in a particular order, starting from
the terminal node, i.e. when we know what the train in node (17) does,
we decide what the node in (16) can do; after we know that we can decide
what will happen to trains in (14) and (15) and so on.

(3.2.6) Join nodes require particular attention. To decide the strategy at these
points all nodes preceding it must be processed together. In general, the
decision is made by the following algorithm:

‘‘‘pyton

if ’the join berth is occupied’ then

’all the trains immediately before will receive the signal to stop’

else

if ’there are more than one train in the station’ then

if ’there is a fast train’ then

if ’there are multiple fast trains’ then

’the one with the higher delay goes first’

# in this case higher time since injection

else

’the fast train goes first’

else

’the train with the highest delay that has already stopped

goes first’

end

else

’the train can proceed’

end

‘‘‘

8
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How does this address the problem? When we simulate the system filling it
below a certain capacity level, trains are not expected to interfere with one another.
In this case it is trivial to calculate the time it would take to a train to complete
the entire journey. On the other hand, by running the simulation many times
at different capacities we can record the distribution of the time taken for trains
to complete the whole journey. Taking the mean time or other suitable statistic,
we can produce a timetable. Once a time table has been established, we could
then study how delays can propagate in the network and answer questions such as
what happens when we are near full capacity? Which delays considerably affect
the performance of the network? What happens if we introduce injection delays
and ejection delays? What happens if we make a train stop at one station for an
unknown amount of time? We can change the join and split rules in to explore dif-
ferent scenarios and study how these affect the network. For example, knowing that
a fast train is delayed could trigger the action of making slow trains wait in previ-
ous stations. This could be relevant when considering trains having different speeds.

Results to date Our network is programmed to favour fast and delayed trains.
To do so we set the following rules for a train to move forward:

• Fast trains always have priority over slow trains.

• If both trains have the same type and the same amount of delay (which could
be zero) the probability of moving forward is 50%.

• If both trains have the same type and one of them is more delayed than the
other one, the most delayed train moves first.

• In stations one platform has preference. The second platform only gets used
if the first one is taken.

The current model is as simple as possible. This means that splits and joints are
related to three berths, and stations have two platforms. In future development,
adjustments could be made to model a network which is a more accurate represen-
tation of an existing railway network.

Code The model simplify the rail network, representing it as a finite graph where
each node corresponds to a berth, consistently with the information available at the
global level. At each time step the program, in function of the current global status
of the system, decides (and applies) the next move of all the trains in the network.
The main function is ‘railtrack’, it has basically one input and several settings.
The input ‘ad matrix’ is the matrix which describes the network connections as
a graph. The parameter ‘time steps’ determines the number of iterations. Other
parameters refer to delays probabilities and congestion:

prob_inject = floating number between 0 and 1, probability that in a

single starting empty berth is filled with a train

lambda_delay = non negative value, constant for the poisson

describing the delay of the trains, the constant corresponds to the

9
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average delay

prob_stop_anywhere = floating number between 0 and 1, probability

that a train spends one time step further in the station

prob_stop_station = floating number between 0 and 1, probability

that a train spends one time step further in any non- station berth

The outputs are the:

trains_old = set containing all the trains that arrived at the

last station.

trains_now = list of all the berth at the end of the computation,

the entry is the class of the train in the berth, 0 if there are

no trains in that edge.

transitions = matrix with the instruction for moving the trains at

each time step. Ex: transitions[7] it is a vector that describes

the action to be taken at the time_step=7, the train in the

position 4 goes in the position transition[7][4], if in a specific

position there are no train the relative vector entry is null.

matrix_of_trains = matrix with the train in the network at each

time step (characterized just by the category), used for printing a gif output.

Moreover there are some utility functions, in particular ‘outputcsv’ generates CSV
files useful for studying the behaviour of the network with different parameters. See
Appendix A for full code.

3.2.1 Results

(3.2.7) We ran the simulation with different settings of parameters (more than
1000 different settings). Here it is how our network looks (blue are fast
trains, red slow trains):

(3.2.8) Figure 3 is an example of the kind of analysis you can do with the model.
Blue dots are fast trains, red slow. These show the impact of the strategy
on the initial delay: if a train has more delay then it will not gain more
delay during the journey since it has acquired priority. A better analysis
would describe the propagation of the delay over the network. Figure 4,
refers to the following settings: injection probability = 0.75 (probability
that a train enter in a start edge); lambda Poisson coefficient = 5 (distri-
bution on the initial delays of the trains); probability of stopping anywhere
0.001; probability of stopping at station 0.01.

3.2.2 Discussion

(3.2.9) Strengths The code has the potential of modeling the whole rail network.
It has different setting that can simulate peak times, tendency of delays
in stations and stops at any berth. One could use this code to study the

10
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Figure 3: An example of the kind of analysis you can do with the model. Blue dots
are fast trains, red slow. This shows the impact of the strategy on the initial delay:
if a train has more delay then it will not gain more delay during the journey since
it has acquired priority

propagation of delays and test the implementation of new decision making
schemes. When a ‘critical’ decision has to be taken it would possible to
run several forecasts of the network with different decisions and pick the
method which most probably will minimize the delays.

(3.2.10) Limitations The actual code is just a sketch written in few days, therefore
it is flexible to a certain extent. Although it is possible to input a rail
network by its adjacency matrix, there are some constraints about the
structure of it. For example, the current code does not deal with overtaking
(they are just possible in the stations), nor with paths of different lengths.
Time, distance and velocity are treated as discrete values. So far any train
takes one time step to move to the next berth, it would be possible to
describe the network with a more flexible and realistic structure (including
trains with different speeds and subdividing actual ”long” berth in shorter
ones) but we retain that the discrete approach is a key point in order to
make the simulation feasible from a computational point of view.

(3.2.11) Improvements Certain generalizations to the code can be made quite
easily, other ones would require deeper modifications. For further imple-
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Figure 4: injection probability = 0.75 (probability that a train enter in a start
edge) lambda poisson coefficient = 5 (distribution on the initial delays of the trains)
probability of stopping anywhere 0.001 probability of stopping at station 0.01

mentation it would be key to rewrite the code in an a faster language, such
as C or Fortran. This would allow to process the simulations as fast as
possible and would give the possibility of obtaining sensible data in real
time. One possible approach would be forecasting the network behavi-
our accordingly to different strategies (running several simulation in few
seconds) and pick the best one.

(3.2.12) It would be possible to model the parameters in such a way that the
simulation is able to address realistic situations, for instance by using

12
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Figure 5: A sketch showing the signal aspects in the blocks behind a train. The
first block behind shows red, the next one yellow, the one after that double-yellow,
and finally green.

mixed strategies for the choices depending on the current status of the
whole system, of the following track or any particular conditions that
might be interesting to explore.

(3.2.13) Since as far as we understand there is not yet a clear algorithm, or a
standardized way to take decisions, this approach could help developing a
global decision making rule set by observing how every different kind of
node most commonly behaves.

(3.2.14) Contacts Marco Caselli
Laura Guzmán-Rincón
Roger Hill
Giovanni Mizzi
Sofia Trejo

3.3 Approach 2: Signalling Dynamics

3.3.1 Signalling Background

(3.3.1) We assume that line-side signals are placed at roughly regular intervals
along each line of track, and are the primary (and often the only) me-
chanism for controllers to affect the progress of a train along its route.
Signals show one of four aspects: green, double-yellow, yellow and red. At
a green signal the driver can proceed at maximum speed for the track, at
double-yellow and yellow the train must slow by increasing amounts and
be prepared to stop at a future signal. A red signal must not be passed.

(3.3.2) The track is divided into blocks by the signal locations. A built-in safety
feature ensures that if there is a train in next block then the preceding
signal shows red. If the next block is free but the one after contains a train,
then the signal is yellow, and if there are two free blocks before the next
train, then the signal is double-yellow. With three or more free blocks the
signal shows green. See figure 5

(3.3.3) These signals can be manually over-ridden, but only to keep a signal at an
aspect that is less permissive than the safety settings above. It is generally
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not permitted to manually change a signal to a more permissive aspect,
since this might result in trains not having enough warning to stop at a
future red. Thus by default, signals are left on red until a route is allocated
to a train wishing to travel along a particular stretch of track.

3.3.2 The model

(3.3.4) We used discrete train model to describe the local behaviour of individual
trains as they encountered signals on the track and the feedback between
multiple successive trains on the same line. In particular we are interested
in the effects of perturbations on a string of trains running under green
lights, and on the effects of a string of trains either coming to a halt at an
unexpected red, and on a string of stopped trains starting up again after a
red light turns green. We take into account the finite length of each train,
the fact that signals can be seen in advance of their position, and the time
is takes to accelerate and decelerate a train to its desired speed.

(3.3.5) We consider a set of N trains running on a single track with K equal
signal blocks of unit length. We index the trains by n ∈ Z ∩ [1 : N ] and
the signals by k ∈ Z ∩ [0 : K]. We denote time by t and distance along
the track by x.
The dependent variables in the problem are then

(3.3.6)

xn(t) — the position of nth train at time t

vn(t) — the velocity of nth train at time t

sk(t) — the aspect of the kth signal at time t

σn(t) — the aspect of last signal that train n has seen as of time t

(3.3.7) where the signal aspects are encoded as 0 for red, 1 for yellow, 2 for double-
yellow, and 3 for green.
The input functions and parameters of the model are as follows:

(3.3.8)

h — the distance ahead that a train driver can first view each signal

d — the length of each train

A(v, σ, δ) — the acceleration function

where the acceleration function can depend on the current speed v, the last observed
signal aspect σ, and distance to next signal δ.

(3.3.9) The four governing equations are then as follows. The rate of change of
position of each train is given by its velocity, and the rate of change of
velocity is given by the specified acceleration:
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(3.3.10)

dxn
dt

= vn (1)

dvn
dt

= A(vn, σn, dxne − xn) (2)

(3.3.11) Unless overridden by a manual intervention, the signal aspects are deter-
mined by the number of blocks ahead of each signal the closest train is.
We must consider both the front and back of each train, and so obtain

(3.3.12)

sα = min
{

min
n;xn>α+d

(bxn − dc − α), min
n;xn>α

(bxnc − α), 3
}

(3)

(3.3.13) Finally, the signal last seen by each train is determined cases, depending
on whether the train is in sight of a signal. If it is, then we adopt that
aspect. If not, then we leave the last observed aspect unchanged. Hence:

(3.3.14) {
σn = sdxne : dxne − xn < h

dσn
dt

= 0 : otherwise
(4)

3.3.3 Initial model and numerical implementation

(3.3.15) For an initial model, we take h = 0.3 and d = 0.1. For the acceleration
function, we assume there is a desired speed V(σ) for each signal aspect,
and then take a simple smoothed constant-acceleration function to drive
the speed towards the desired one:

(3.3.16)
A(v, σ, δ) = a0 tanh((u− V(σ))/v0) (5)

(3.3.17) For the target velocities, we take

(3.3.18)
V(0) = 0, V(1) = 1, V(2) = 1.8, V(3) = 2. (6)

(3.3.19) The acceleration parameters are set as a0 = 3 and v0 = 0.1.

(3.3.20) The model is implemented numerically using the Perl code in Appen-
dix A.2. Each of the variables xn, vn, σn, and sα are updated in turn,
based on the equations above, with simple forwards-Euler time-stepping
for the temporal derivatives.
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Figure 6: Distance–time graphs showing a set of trains restarting after being held
at a red signal. Each line represents a train, and the colour is the aspect of the
signal (cyan represents double-yellow). The velocity model and parameter values
are as specified in §3.3.3.

3.3.4 Results and discussion

(3.3.21) To illustrate the model, a simple case is studied, simulating trains starting
up from a line blockage that has just been cleared. A line of trains is
initially at rest, with one train per block each stopped just behind a red
signal. The signals ahead are then turned green allowing the first train to
set off. As each train clears its block the train behind can then start to
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move.

(3.3.22) The results of this model (with the parameter values above) are shown in
figure 6. We observe and interesting instability in the start-up process,
whereby trains further back initially start moving, but then have to stop
again at a red light.

(3.3.23) When trains start up in order, the following train always loses a bit of
ground on the train ahead as it only starts to accelerate once the signal
ahead turns to yellow. So once up to speed it would be running slightly
more than a block length behind. The instability is caused by the driver
being able to see the next red signal further ahead than this lost ground.
Thus a red signal is observed in the next block immediately after restarting.
Whether or not this causes a train to stop, it will likely make it at least
slow, reducing the distance to the train behind. Hence the next train in
the line will be affected slightly more, and so on.

(3.3.24) The instability only grows on the first new red, as the additional slowing
for that red allows the train ahead to make up enough ground to be further
ahead by the next signal.The only way to avoid this instability is to ensure
that the distance lost during acceleration is large enough that each train
has no need to break for the next signal. This could be achieved by having
trains accelerate more slowly, and/or introducing a more realistic breaking
model that doesn’t react immediately to an observed red signal, but only
starts to slow the train when δ is small enough that braking is needed to
come to a halt before the signal.

(3.3.25) We also observe that the trains spend a long time running under double-
yellows, before being far enough apart to only observe green lights. This
is because of the relatively small speed differential in the model between
green and double-yellow. Thus when a train in front is continually passing
green lights and the next train is just over two blocks behind and so seeing
double-yellow, the train ahead is only going slightly faster than the train
behind. It therefore takes a long time for the train ahead to make up
enough extra ground to extend the gap behind it to three blocks.

3.3.5 Further work (model refinement)

(3.3.26) This is only a preliminary model, but is designed to show how detailed
train-level modelling could be accomplished. A number of refinements
would need to be made for this model to have practical applications.

(3.3.27) These include:

• Allowing for variable block lengths and signal observation distances;

• Allowing for different trains to have different characteristics;
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• Providing more realistic acceleration and deceleration models.

In particular, the function A(v, σ, δ) should be adjusted so that breaking only com-
mences when necessary to adjust the speed to the desired value as the signal is
passed. So for δ larger than some critical value (dependent on v and σ) no breaking
would occur. Currently breaking commences the moment a new signal aspect is
observed.

Contact: Robert Whittaker

3.4 Approach 3: Continuum Theory and Flux Modelling

3.4.1 Classic Traffic Modelling

(3.4.1) Modelling the flow of traffic to understand the formation and evolution of
traffic jams is a well-studied problem, and the ideas can be extended to
consider traffic jams on trains. The governing equation, imposing ’conser-
vation of vehicles’ is

(3.4.2)
∂ρ

∂t
+
∂(ρu)

∂x
= 0, (7)

(3.4.3) where ρ(x, t) is the number density of vehicles, u(x, t) is the speed, and
thus the flux is given by ρu. Independent variables x and t are distance
along the track and time, respectively. Classically the speed is assumed to
be a simple function of density with effects such as acceleration and driver
response times neglected. In this case the conservation equation above
can be formulated as a differential equation for ρ. Most commonly for car
traffic, the speed-density relation is taken to be

(3.4.4)

u(ρ) = 1− ρ

ρmax

, (8)

(3.4.5) where ρmax is the maximum density of vehicles (corresponding to a stand-
still traffic jam) and the maximum speed is u = 1.

(3.4.6) Using this model we can consider a simple situation in which the initial
density of vehicles is zero for x positive and ρmax for x negative, represen-
ting a line of vehicles stuck at a red light. The resulting time evolution of
the solution to the conservation equation with the velocity function given
by the above equation is shown in Figure 7.

3.4.2 Modified Velocity Function

(3.4.7) To adapt the classical theory to describe the flow of train traffic, as opposed
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Figure 7:
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to cars, we discussed a number of options. One of these was to take the
formula

u(ρ) = umax

(
4

3(1 + ρ/ρmax)2
− 1

3

)
, (9)

where the non-linearity of this relation is based on the concept that the
driver attempts to choose a speed that will allow them to stop in a gi-
ven distance should the signalling indicate that this is necessary. It also
attempts to have a maximum speed, a maximum density and account
approximately for the four different signal types that are possible. The
behaviour for this modified speed function is given in Figure 8

Figure 8:

3.4.3 Effect of Signals

(3.4.8) One possible extension to this continuum model was briefly considered.
Here we might account for the train signals that are visible to drivers
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indicating the density of trains further down the track. To model this, we
can assume speed of a train to be a function of train density at a distance,
d, ahead of the train, i.e.,

(3.4.9)
Q(x) = ρ(x)u(ρ(x+ d)). (10)

(3.4.10) We find this modification leads to unstable behaviour, when implementing
this flux function within our numerical scheme. We believe this warrants
further investigation. Additionally, as signals are placed at fixed points
along the track, it may, in fact, be more accurate to model the speed as a
function of density at discrete points

Q(x) = ρ(x)u(ρ(xk)), (11)

where xk > x is the location of the closest upcoming signal.

3.4.4 Conclusions

(3.4.11) This investigation seems to show general effects of modifying the train
’flux’ that may be useful in predicting behaviour of train traffic and de-
lays. An accurate measurement of the flux would allow us to test and
refine predictions, so we would recommend exploring this further. Additi-
onally, the incorporation of looking ahead to signals appears to have some
interesting instability issues.

3.4.5 Flux Modelling

(3.4.12) In determining the dynamics of trains is is crucial to understand how the
“flux” of trains is altered by signalling and the geometry of the track.
We draw on the ideas of traffic modeling and note that, on a single track
system, the flux is simply the density of trains times the velocity of the
trains. We now explore what this flux might be and how it might be
altered. We start by exploring a deterministic model of the flux but we
note that in practice the flux will vary considerably with driver behaviour,
train type, rail conditions and other source of uncertainty. We start by
considering a single block of track and ask what the flux along this is. As
the train enters a block there are four possible scenarios:

• the signal it just passed was green

• the signal it just passed was double yellow

• the signal it just passed was yellow.

In each of these cases we assume there two measurable quantities for the block.
Firstly: the ‘transit time’, Tt, the time after entering the block that the train takes
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to pass the next signal and be in the next block and secondly:the ‘decision time’,
Dt, the time after entering the block where the driver has seen the next signal and
must react to it such as coming to a halt at a stop signal.

We will briefly discuss general properties that these two quantities might have but
would expect the data currently collected to give a very good insight into what the
real behaviour is.

To examine what the resulting flux is it is informative to consider a simple diagram
that might be put on the train path graph (train position (measured in block num-
ber) versus time (in minutes)). To fill the train route in we can now note that when
put on this diagram we must have certain blocks and certain parts of blocks empty
in order for the train to observe the signals that will make it run at a steady rate
through the first block..

Here are the three examples where we assume the signal colour the train driver sees
as they enter the block is the same colour as signal when they leave

For a train travelling ‘under green signals’ we have Figure 9. For a train travelling
‘under double yellow signals’ we have Figure 10. For a train travelling ‘under yellow
signals’ we have Figure 11. From these we can determine the ‘flux’ of trains under
each of the signal conditions. For example under green, using the Tt and Dt values
for the bock under green, there is the block currently filled by the train which is
occupied for Tt. Furthermore the two blocks ahead must also be empty for Tt
and the final block that must be empty for at least Tt − Dt so that the signal is
green when it is observed by the driver. The total track used is therefore 4Tt−Dt
block-minutes, hence the flux is 1/(4Tt−Dt) train/block-minute for a train under
green. Similarly we have 1/(3Tt−Dt) train/block-minute for trains under double
yellow and 1/(2Tt−Dt) train/block-minute for train under yellow. Critically, note
that both Tt and Dt will have different values for each of the signal conditions
and, in particular that they will be smallest under green because the train travels
fastest and increase monotonically as the severity of the signal increases and the
train travels slower. (Note we expect Tt−Dt to also increase monotonically.)

What is not so obvious is which of the three possible fluxes is maximum. This
is important since the maximum flux would give the fastest recovery from a dis-
ruption from the standard timetable. This is similar to the active speed limits on
motorways where speeds are set to give maximum flux along the motorway. An
interesting study would be to determine the three possible fluxes for all the blocks
on a particular line and hence to find the blocks where the maximum fluxes are
smallest and hence might indicate regions that will cause disruption to spread.

We can now consider using the existing timetable and the current status to create
a new timetable by altering the path in the ‘block-time’ diagram while keeping
the relevant additional blocks empty. We can also modify the shape of the path
by removing the usual assumption of ‘travelling under green’ to one where part of
the path is travelling under ‘double yellow’ or ‘yellow’. Such alterations allow the
steepness of the path to be reduced while simultaneously reducing the width of the

22



Resolving train delays ESGI130

Figure 9: we assume the signal colour the train driver sees as they enter the block
is the same colour as signal when they leave.

Figure 10: we assume the signal colour the train driver sees as they enter the block
is the same colour as signal when they leave

path due to needing fewer blocks free around it.
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Figure 11: we assume the signal colour the train driver sees as they enter the block
is the same colour as signal when they leave

3.4.6 Conclusion

(3.4.13) We have outlined a method for assessing possible parts of the track where
difficulties may occur by examining the flux along the track. We have
also described a method for graphically modifying a timetable that can
accommodate understanding of this changing flux. Critical to such an
assessment is to determine the dependency of transit time and the decision
time on signal state and this requires looking in details at data.

(3.4.14) Contacts: Caoimhe Rooney, Jessica Williams, Colin Please

3.5 Approach 4: Predictive Modelling

3.5.1 Method A: Data driven method

(3.5.1) Aim to analyse the relationship between current operational behaviour
(including current decision-making approach to deal with conflicts) and
the quality of service (QoS) based on historical data.

(3.5.2) Given a fixed schedule, we use incremental delays at different stations
to predict a specific QoS performance measure. Incremental delays at
a station computed based on the scheduled arrival time depend only on
what happens at the previous station/junction and on the track between
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the two, and operational decisions made before the train arrives at that
station, which can be used as inputs.

(3.5.3) There are several relevant QoS measures such as:
Total cumulative delay at a main station, e.g., Paddington
Average journey time between two main stations compared to the schedu-
led one
Average journey time of a typical customer on a common route. In or-
der to compute this measure, we might need additional information. For
example, one need to change trains to reach the destination on those com-
mon routes.

(3.5.4) Implementation The main dataset for this approach is the train mo-
vement dataset. Incremental delays can be computed from the actual
delays recorded in the dataset. Given a train i and a station j, the incre-
mental delay ∆di,j = di,j − di,pred(i,j), where di,j is the actual delay of train
i at station j, and pred(i, j) is the previous station on the route of train i
towards station j. For the origin station j0, ∆di,j0 = di,j0 .

(3.5.5) We start with a simple network shown in Figure 12 which consists of 4 stati-
ons: PADDTON (Paddington), HTRWAJN (Heathrow Airport Junction),
HTRAPT (Heathrow Airport Terminals 1, 2, and 3), and RDNGSTN (Re-
ading Station). There are two directed routes we would like to consider:
RDNGSTN −− > HTRWAJN −− > PADDTON and
HTRAPT −− > HTRWAJN −− > PADDTON.

(3.5.6) The QoS measure considered is the total cumulative delay at Paddington
station. We would like to determine how delays happening in the network
in a one-hour period affect the total delay at Paddington station in the
next one-hour period. For each one-hour period, incremental delays for all
trains within the network can be computed for all stations. If a train has
not used a station in the network within that one-hour period, the delay
is set to 0. The total cumulative delay at Paddington station can also be
computed using the delays of all trains which arrived at Paddington within
that one-hour period. Given the prepared dataset, predictive modeling can
be applied using appropriate software such as R, IBM SPSS Modeler, and
SAS Enterprise Miner.

(3.5.7) TO DO:
Extract necessary data from the main movement dataset for this simple
network.
Analyse the results of the predictive model, especially the importance of
each incremental delay in predicting the selected QoS measure.

(3.5.8) Discussion Are incremental delays good enough to represent the primary
source of delays?
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Figure 12: We start with a simple network which consists of 4 stations and consider
two directed routes: Reading Station −− > Heathrow Airport Junction −− >
Paddington and Heathrow Airport Terminals 1, 2, and 3 −− > Heathrow Airport
Junction −− > Paddington.

We could try to predict the service quality at important stations (instead
of overall QoS) by using relevant incremental delays from upstream (sub-
)network. This approach could address the above issue of primary source
of delays. Would it be enough to use the total incremental delay at each
station in the network within a one-hour period to predict the delay at the
main stations in the next one-hour period, i.e., removing the reference to
particular trains in the inputs of the model?
In addition to analyse the relationship between current delays and QoS,
it would be interesting to use historical data to analyse the uncertainty
in primary sources of delays, e.g., traveling time between stations, delays
caused by passengers at stations, driver availability, etc. These analyses
can be useful in data preparation for the optimization models to construct
the (robust) train timetable and to (proactively) reschedule the train ti-
metable while taking into account potential delays in the future.
Assuming the delays at the main stations (e.g., Paddington station) can be
estimated, an interesting problem would be how to reassign arriving trains
to appropriate berths to make sure the delay in the future will be mini-
mized. The problem would provide a global solution, once every half an
hour, let say, while taking into account the anticipated delays of arriving
trains.
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3.5.2 Method B: Event based delay propagation in a train network

(3.5.9) Introduction In addition to the data driven method above, trains in
networks can be characterized by logical relations: for example, train T1
is in front of train T2 on the same track segment, and at intersections it
is decided which train will go ahead of another train. This implies that
delays will propagate according to these logical relations. If train T1 is
behind train T2 which is delayed then the delay may be passed onto train
T1. Similarly, if a train has to wait at an intersection for a delayed train
then the delay is passed on. (Note: could also use a contagion model.

(3.5.10) The idea is to calculate the delays d(k) = (d1(k), . . . , dN(k)) for trains
T1, . . . , TN after event k for given initial delays d(0). More precisely, we
want to find functions fk which correspond to individual events such that

d(k) = (fk ◦ · · · ◦ f1)(d(0)). (12)

(3.5.11) To illustrate the approach, let us consider a simple example. This likely
relates to existing algorithms, for example: A delay propagation algorithm
for large-scale railway traffic networks; doi:10.1016/j.trc.2010.01.002

3.6 Approach 5: Identifying the biggest contributors of de-
lay in the network

(3.6.1) The problem. It is not only delay somewhere in the network that ge-
nerates delay somewhere else in the network. It could be that a schedule
is simply practically incompatible with the smooth operation of the rest
of the network. One can imagine an ideal situation where a line is always
on time and is olivious to the chaos around it. Perhaps having the entire
schedule of this line shifted by (say) one minute could reduce a global me-
asure of delays throughout the network. In other words, a train being on
time can be bad for other trains anywhere in the network.

(3.6.2) An example: minimising delay at Paddington Station: One possible goal
is therefore to identify which service and at which station is generating
the largest amount of delay at Paddington Station. (Variations include
the total amount of delay in the most congested cities in the network or
even the entire network.) Delay at Paddington Station at a given time can
be caused by any train in the network in the past. (One can model that
the effects are felt only with the last τ units of time, e.g. three hours.)
The symbol ω will very crudely represent realisations. (For example, if a
service runs every day from 1 January to 31 December, then ω is simply a
label of all the days of the year.) Let Rω(t) be a train scheduled to leave
Reading station at time t on a certain service (line) on realization ω. The
delay of Rω(t) is denoted

δRω(t) .
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On the other hand, one measures the total delay at Paddington over a
certain period of time, e.g.

δPω(t) :=
∑
i

∫ t+τ

t

δωi (s) ds ,

where τ > 0, where i indexes all services scheduled to arrive at Paddington
during t and t + τ , and δωi (s) is the delay at time t ≤ s ≤ t + τ at
Paddington Station of service with index i, on realisation ω. Other metrics
are evidently possible. One then measures the correlation between δRω and
δPω(t). It may be that (on average) a delay for R of (say) 3 minutes will
minimize the delay at Paddington. This suggests that the schedule of R
should be modified accordingly. The above should be done for all services:
all trains going through all stations in the network (including Paddington!)
over all times.

(3.6.3) More sophisticated metrics? The above is evidently a very simple
metric. Even keeping the same measure of delay at Paddington, more
elaborate schemes of correlations involving several services should be in-
vestigated.

(3.6.4) The use of deep-learning algorithms. Deep learning algorithms have
proved very powerful in identifying correlations. Examples are given in the
book (for a general audience) Big data: a revolution that will transform
how we live, work and think, by Viktor Mayer-Schönberger and Kenneth
Cukier.

3.7 Approach 6: A Bayesian model of route status

(3.7.1) A Bayesian model looking at the posterior distribution of the health status
at each meaningful interval along a route, given the delays incurred at each
interval.

3.7.1 Problem to address

(3.7.2) Delay information of a train when it reaches certain points, or berths, on
the route is available from the train movement data. However, it is difficult
to know if a lateness is due to normal operational behaviour or if some
unpredictable events might have happened. And, even if we knew when
and where an action has had been taken to resolve a failure, the failure
might have stemmed from points way before it was getting manifested.

3.7.2 Description of model

(3.7.3) We consider that there is a set of points distributed along the route, and we
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observe certain amount of delays associated with each interval; the length
of delay in any point segments, call it relative lateness, is dependent on
what type of point the train is heading to.

(3.7.4) In this toy model we assume there are three types of points: junctions,
stations and terminal (destination). We could fit a Gamma distribution to
each of the point type, using the lateness data corresponding to the types,
because a junction may have less lateness than a station, which may have
less lateness than the destination.

(3.7.5) As an example, suppose the train is en route A—B—C—D, where B is
station, C is junction and D is the destination of the train. We are inte-
rested in the lateness incurred between segments AB, BC and CD, which
we could from observed historical data fit a distribution and it may be the
case that on average the relative lateness at C is less than that at B which
is less than that at D.

(3.7.6) The total delay adds up all the relative delays along the route, this con-
stitutes one of the possible contingencies arising from normal operational
behaviour. However unpredictable events can happen which cause further
delays—the so-called primary delays. To model this kind of events, we
also associate each interval with a status rating that ranges from 0 to 1,
with 0 being normal and 1 being failure, the status rating of an interval
measures the likelihood of primary delay in that interval.

(3.7.7) Suppose we have a route 0 → 1 → . . . → n, where 0 is origin and n is
destination, we assume train leave on time at origin, there are n− 1 inter-
vals. We introduce the following notations: Ti: relative lateness at interval
i, i ∈ {1, . . . , n}
Tn: relative lateness at the terminal, which is the final destination of the
train.
D: D = (D1, . . . , Dn) the collection of status ratings at each point, conti-
nuous random variable taking values from 0 to 1.
J, S: subset of {1, . . . , n} specifying the indices of junction and station
points, respectively, such that |J |+ |S|+ 1 = n.

(3.7.8) Posterior distribution of status rating at each point given the relative la-
teness at the points:

P (D1 . . . Dn|T1 . . . Tn) ∝ P (D1 . . . Dn)L(T1 . . . Tn|D1 . . . Dn)

=
n∏
i=1

P (Di)
n∏
i=1

f(Ti|Di)
(13)

where P (Di) is the prior for the rating at i, that encodes our prior kno-
wledge of tendency of primary delay during segment (i − 1, i), a Beta
distribution can be used, with Beta(1,1) being the uniform distribution,
indicating a vague prior.
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(3.7.9) The term L(T1 . . . Tn|D1 . . . Dn) is the likelihood of observing the relative
lateness, given the status ratings. Here independence is assumed, that is
relative lateness at i only depends on the rating at i. In a simple setting
the conditional random variable Ti|Di is modeled as sum of two exponen-
tial random variables: Ti|Di = E1i + E2i, corresponding to two lateness
contributions: one from normal operational delays and is dependent on
if i is in J, S, or terminal; the second is the contribution due to primary
delays. In this model we use E1i ∼ Exp(µi) with

µi =


µJ , if i ∈ J
µS, if i ∈ S
µT , if i = n

and E2i ∼ Exp(λ(Di)) with λ(Di) = 1/Di −Di

(3.7.10) An MCMC simulation has been run to sample from the posterior distri-
bution of the ratings, using artificial data. The code in R, as well as
parameter settings, are listed in Appendix A.4. Figure 13 shows the pos-
terior distribution of the ratings for each section, for the simulation above.
Compare this with the observed relative lateness Ti, while we may expect
large Ti leads to large Di, there could be subtle cases where this isn’t so
obvious, and it would be interesting to investigate them further.

3.7.3 Further development

(3.7.11) This simulation could be run to sample from suitable real data.
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Figure 13: This plot shows the posterior distribution of the ratings for each section,
for the simulation.
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3.8 Approach 7: Bayesian Networks and IDSS

(3.8.1) In today’s ever more interconnected world, decision making in dynamic
environments is often extremely difficult despite vast streams of data, huge
models and ever-growing disparate domains of expertise. Decision support
can be valuable, but needs to incorporate all the relevant inputs in a
coherent, transparent way so that decision makers can make defensible
policy choices. In dynamic, plural environments decision makers often
need a tool that can draw together expert judgements coming from a
number of different panels of experts where each panel is supported by
their own, sometimes very complex, models. Methodology and theoretical
developments to do this has been recently developed [1].

(3.8.2) Complex networks of railways are one such example. How can we le-
verage these developments to increase efficiency through strategic decision-
making? We first produce a probabilistic model of a single line, from
Bristol to Paddington as a Bayesian Network, learn from data the con-
ditional probability distributions and use this to understand how current
operational behaviour, in terms of delays, affect service quality.

3.8.1 Method

(3.8.3) We represent the line from Bristol Temple Meads to London Paddington
(Figure 14) as a Bayesian network (Figure 15). We then learn the probabi-
lity distributions from data, and use domain knowledge to define sensible
discretisations in the delays.

(3.8.4) In Figure 15 and following we discretise delays into No Delay (negative
delays in freight trains which can leave early to zero delay); Minor delay
(less than 10 minutes); Moderate delay (10.1-29.9 minutes); Severe
delay (30 minutes plus, this is when compensation starts to be paid)

(3.8.5) We extract data into the format of Table 3.8.1 to learn the conditional
probability distributions in Figure 16.

Journey Station1 Station2 ...
Journey 1 Delay1 Delay2 ...
Journey 2 Delay1 Delay2 ...

3.8.2 Results

(3.8.6) Note that most stations have minor delay as the most likely outcome,
with the probability of moderate delays growing as we proceed along the
network, as might be expected. We investigate the effects of delays at
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Figure 14: Route map

Figure 15: Bayesian network. Image produced in Netica [5]
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Figure 16: Bayesian network, with probability distributions learned from data. We
then add key additional connections to the route (Oxford, Newbury,& Heathrow
Airport), initially with flat prior probabilities. Image produced in Netica [5]

Figure 17: Bayesian network, with probability distributions learned from data,
showing the downstream effects on delay probability distributions of moderate (left)
and severe (right) delays at Bristol Temple Meads. Image produced in Netica [5]

upstream stations aon Paddington using a what if analysis

(3.8.7) A what-if analysis shows that a moderate delay or severe delay at Bristol
Temple Meads is likely to have dissipated by Didcot Parkway, with no ef-
fect at Paddington, Figure 17. A moderate delay or severe delay at North
Somerset Junction, Bath Spa or Bathampton Junction is likely to have
dissipated by Didcot Parkway, with no effect at Paddington. A moderate
delay or severe delay at Thingley East Junction or Chippenham is likely
to increase slightly the probability of moderate delay at Didcot Parkway,

34



Resolving train delays ESGI130

with no effect at Paddington. A moderate delay or severe delay at Chip-
penham is likely to increase slightly the probability of moderate delay at
Didcot Parkway, with no effect at Paddington. A moderate delay or severe
delay at Wooton Bassett Junction is likely to increase the probability of
moderate delay at Didcot Parkway, with no effect at Paddington. A mo-
derate delay or severe delay at Swindon is likely to increase significantly
the probability of moderate delay or severe delay at Didcot Parkway, with
no effect at Paddington. A moderate delay at Uffington is highly likely to
lead to moderate delay at Didcot Parkway, with no effect at Paddington.
The effect of a severe delay is a flat distribution at Didcot, suggesting this
combination has not been seen in the data. Moderate or severe delays at
Southall, Acton West or Ladbrooke Grove are highly likely to lead to mo-
derate or severe delays at Paddington, as might be expected, given their
proximity and the limited opportunity for corrective interventions.

(3.8.8) Another approach is to assume that a severe or moderate delay has been
observed at Paddington and examine the probability distributions at the
upstream stations. Figure 18 and Figure 19 show that a moderate or
severe delay at Paddington implies an upstream delay beginning at He-
athrow Airport Junction and propagating though to Paddington. Further
investigations could be made if data on delays at Heathrow Airport, Ox-
ford and Newbury ere obtained or those same journeys and the probability
distributions on delays given delays at multiple upstream stations could
be investigated.

(3.8.9) We can use subjective or heuristic probabilities for the conditional proba-
bility tables, where no data exists, and estimate the effects of delays at
two feeder stations on the following stations, shown in Figures 20, 21, 22.

(3.8.10) This provides a probabilistic model for a single journey. Similar models
could be developed for whole regions, and these networked together using
principles in [1]. If a suitable multi-attribute utility can be elicited from
decision-makers, which has measurable attributes and passes the clarity
test, then the networked probabilistic models for regions along with other
key expert panels (e.g. weather) can be used to evaluate candidate po-
licy options and score each with respect to the utility defines, and taking
uncertainty into account. Figure 23 gives a sketch of such an integrating
decision support system.

3.8.3 Discussion

(3.8.11) The main limitation of this approach is the limitations within the data.
The delay timed recorded are actual delay times, after any mitigating
policies have been applied. We have no record of what mitigating policies
were applied nor where they were applied along the journey.
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Figure 18: Bayesian network, with probability distributions learned from data,
showing the upstream effects on delay probability distributions a severe delay into
Paddington. Image produced in Netica [5]

Figure 19: Bayesian network, with probability distributions learned from data,
showing the upstream effects on delay probability distributions a Moderate delay
into Paddington. Image produced in Netica [5]
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Figure 20: Bayesian network, with probability distributions learned from data
augmented with heuristic and subjective probabilities where data sparse or non-
existent. This shows the downstream effects on Paddington of a severe delay at
both Uffington and Oxford, both feeding into Didcot Parkway. Image produced in
Netica [5]
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Figure 21: Bayesian network, with probability distributions learned from data
augmented with heuristic and subjective probabilities where data sparse or non-
existent. This shows the downstream effects on Paddington of a severe delay at
both Goring & Streetley and Newbury, both feeding into Reading. Image produced
in Netica [5]
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Figure 22: Bayesian network, with probability distributions learned from data
augmented with heuristic and subjective probabilities where data sparse or non-
existent. This shows the downstream effects on Paddington of a severe delay at
both Slough and Heathrow Airport, both feeding into Heathrow Airport Junction.
Image produced in Netica [5]
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Figure 23: Sketch Integrating Decision Support System (IDSS) with 5 attributes in
the Utility: average passenger delay, passengers delayed over one hour, compensa-
tion payments, revenue and Briggs station efficiency [11]. Weather can affect any
region and all regions contribute to the utility function. Region A affects delays in
Region B and Region B affects Region D but regions D is conditionally indepen-
dent of Region A given Region B, i.e. if we know the status of Region B, knowing
the status of Region A gives no further useful information to predict the status of
Region D. Region C is independent of other regions. Image produced in Netica [5]
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(3.8.12) There is now methodology to knit together probability models for different
parts of a complex rail system for decision support. Called an integrating
decision support system (IDSS) this makes possible coherent inference over
a network of probabilistic models [1, 2, 3]. With this methodology, a deci-
sion making panel can define a utility function and the IDSS can be used
to score candidate policies to aid selection. This approach is transparent
giving decision-makers the ability to justify decisions to an auditor. Un-
certainty can be propagated using Tower Rules E(X) = E(E(X|Y )) and
V ar(X) = E(V ar(X|Y )) +V ar(E(X|Y )) (sometimes called the law of to-
tal probability for the expectation and conditional variance identity). This
allows uncertainty to be incorporated into the score for candidate policies.

3.8.4 Future developments

(3.8.13) * Gather data on the interventions enacted to mitigate delays and esti-
mate effect of intervention v no intervention perhaps by structured expert
judgement approaches [6, 7, 8, 2]
* Represent the rail system as a set of probabilistic models in a way that is
suitable to the domain, e.g. by management regions. Add in probabilistic
information from any external influencing factors, e.g. weather forecast
indicating ice / heat / snow / likelihood of leaves on the line.
* Develop a mulitattribute utility against which to evaluate candidate in-
terventions [4], e.g. overall delay, number of passengers delayed more than
x minutes, costs of compensation to passengers / train operators.
* Develop IDSS [1] to score candidate policies to provide decision support.

(3.8.14) Contact: Martine J. Barons

3.9 Approach 8: Mixed Integer Programming

(3.9.1) It’s also a toy model of a sort. Method Aim to reschedule traffic in a
limited time window (e.g., 60 minutes into the future) on a macroscopic
level (that is, arrivals/departures to/from major stations and junctions;
do not pay too much attention to detailed track topology and dynamic
properties of rolling stock, etc.). The objective is to make the new schedule
as close to the original one as possible.

3.9.1 Decision variables

(3.9.2) The rescheduled time of each event. An event is the arrival of a particular
train in a particular location, or the departure of a particular train from
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a particular location.
For certain pairs of events, the precedence relation. Constraints

• Open track capacity is modelled by headway constraints : minimum time be-
tween departures/arrivals of two trains to/from the same line.

• Overtaking: where overtaking is impossible (open track and certain station-
s/junctions), the precedence relation must be preserved.

• Train must not depart earlier than advertised time of departure.

• Minimum travel times between pairs of consecutive stations (depends on class
of train, but can be refined to be more train-specific).

• Minimum dwell times in stations where the train stops (also depends on class
of train, but can be refined to be more train-specific).

• Known actual departure times (‘boundary conditions’) – current system be-
haviour.

TO DO: How to model conflicts between arriving and departing trains at Padding-
ton?

Objective Minimise total delay = sum of (rescheduled time of event - original time
of event) over all advertised arrivals of trains.

Implementation Coded using the Mosel modelling language to be solved by
Xpress. (Because JF has a licence for Xpress and no licence for Cplex or so.)
See Appendix A.3 for code.

Results We have implemented the model in a simple situation of the Reading–Paddington
line, with data for 7 trains. In simple scenarios it shows that sometimes it may be
useful to reverse the order of running trains, sometimes it may be beneficial to let
trains overtake at stations to deal with disruptions (overtaking is not really possible
between Reading and Paddington, but we allow it in the model to test these as-
pects). In one scenario we can see how the delay of a train departing from Reading
propagates to a train going back from Paddington to Reading (same rolling stock).
Discussion Strengths The model deals with disturbances on a more global scale
by considering the impact of traffic-management decisions on the whole network.
The solution is optimal with respect to preserving the original schedule as much as
possible.
Limitations The model does not take into account detailed-level information, such
as platforming, exact track topology, dynamic properties of rolling stock, etc. Ho-
wever, more constraints can be added if necessary to model some of these aspects.
Scalability is yet unknown, but it appears that rescheduling an hour of traffic on the
GW network should be feasible. The practicality of this approach has two parts:
1. Can we solve the model in reasonable computational time? 2. Is the resulting
schedule feasible in practice? In practice, there will always be a trade-off between
computational time and quality of new schedule.
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Next steps (& Scalability)

• Test whether the model can be scaled up to usable size.

• Build a front end that will allow the user to study the effects of different traf-
fic management decisions, and the propagation of various disruption scenarios.

• Integration with “timetable surgery” interventions?

Open questions What is the effect of “riding the yellows” on travel times? Can
we really ignore it in the model? (See [Approach 2])

Contact: Jan Foniok

3.10 Approach 9: How to improve global outcome from
local decisions?

(3.10.1) Model of current implementation. The entire network is subdivided
into smaller portions. Each portion has a local controller which makes
decisions. They actually see a slightly larger portion of the network which
it controls. (There, the local controller cannot act on this extra portion.)
The local controllers do not see or take into account what happens of this
extended portion of the network in their decision-making process (algo-
rithm).

(3.10.2) A possible weakness of this implementation. If a local controller
sees all the berths free just outside the portion that they control, they will
presume that is ok to allow all trains to leave this portion. This works
to optimise the performance of the local portion of the network. On the
other hand, the local controller does not take into account what happens
outside this local portion, and it may be that allowing trains to leave this
local portion based on the fact that the berths are unoccupied could have
serious consequences somewhere else in the network.

(3.10.3) The problem How can information from outside of the local portion of
the network be used in order to prevent decisions which are good locally
from having bad consequences globally? How would this be implemented?
In what form would information from the network be fed back to the local
controller?

(3.10.4) A suggestion: A unique global controller has access to the entire network,
and uses this global information to modify the local information used by
the local controllers. The local controllers do not change their decision-
making algorithms.
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(3.10.5) Feeding back global information to the local controllers. Let P be
a portion of the network controlled by a certain local controller. Let P

′
be

the slightly larger portion of the network which this local controller sees
and therefore uses to make decisions on traffic in P . Let D denote the set
of rules used by this local controller. Again, D is used to acts on P , and
uses the information on P

′
. Let N denote the entire network. There is

a unique global controller which sees the entire network N . This global
controller decides what they want to optimise. The global controller does
not directly act on the network, but is somehow able to influence the local
controllers in such a way to achieve the global controller’s optimisation
problem - whatever it is. Here is one possible implementation of how
the global controller is able to do this with regards to the local controller
acting on the portion P . Based on what the global controller knows on the
entire network N (e.g. current state or history), they generate a virtual
portion V of the network in the following way. The portion V is the same
as the portion P

′
, except that they can overwrite the information on the

subset of P
′

not in P . The local controller uses the same set of rule D,
but applies them to V , rather than P

′
, in order to act on P .

(3.10.6) How does the global controller decide what information to send to the
local controllers? The global controller decides what should be minimised.
The algorithm used by the global controller to generate the virtual local
network V

4 Conclusions

(4.0.7) There are a number of promising approaches which provide useful lines of
enquiry, demonstrating the strong potential of industry - academia colla-
borations. Many of the study group approaches are suitable for expan-
sion beyond the simple railways modelled to include variable train speeds,
junctions and intersections, temporal differences in usage, such as tidal
flows in and out of cities, and resource constraints.
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A Appendices

A.1 First appendix: Toy Model code in Python 2

https://codebunk.com/i/nN2ugbCqRS9FMDGTgPar

https://codebunk.com/i/nN2ugbCqRS9FMDGTgPar

Code in Python2:

‘‘‘python

import numpy as np

#example of network_matrix

network_length=17

ad_matrix = np.identity(network_length)

ad_matrix[0][2] = 1

ad_matrix[1][2] = 1

ad_matrix[2][3] = 1

ad_matrix[3][4] = 1

ad_matrix[3][5] = 1

ad_matrix[4][6] = 1

ad_matrix[5][6] = 1

ad_matrix[6][7] = 1

ad_matrix[7][8] = 1

ad_matrix[8][9] = 1

ad_matrix[8][10] = 1

ad_matrix[9][11] = 1

ad_matrix[10][11] = 1

ad_matrix[11][12] = 1

ad_matrix[12][13] = 1

ad_matrix[12][14] = 1

ad_matrix[13][15] = 1

ad_matrix[14][15] = 1

ad_matrix[15][16] = 1

time_steps= 100
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def generate_nodes(ad_matrix,network_length):

nodes=[0 for x in range(network_length+1) ]

#A vector containing all the nodes (as classes), the zero position are for the trains getting out

for i in range(network_length):

#Here we check for each node all the edges that it reaches (including it self)

a=np.where(ad_matrix[i,:]==1)[0]

a = np.delete(a, np.where(a==i)[0])+1

#Here we check for each node all the edges that gets there (including it self)

b=np.where(ad_matrix[:,i]==1)[0]

b = np.delete(b, np.where(b==i)[0])+1

if len(a)==1 and len(b)==1: #line case

kind=0

elif len(a)==1 and len(b)>1: #split case

kind=2

elif len(a)>1 and len(b)==1: #joint case

kind=1

elif len(a)==0: #last node, we will send it to the 0 node

kind=4

nodes[0]=node(0,5,[i+1],[0])

a=[0]

else: #starting edge

kind=6

nodes[i+1]=node(i+1,kind, b, a) #We leave the first one empty

#We still need to add stations, those are line nodes (0),

#which have a split node (1) as nodes_in and a joint node (2) as node out.

for i in range(network_length):

if nodes[i].kind==0 and nodes[nodes[i].nodes_in[0]].kind==1 and

nodes[nodes[i].nodes_out[0]].kind==2:

nodes[i].kind=3

return nodes

class node(object):
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#We save all the nodes in a vector, the 0 one corresponds to the trains leaving

"""

Node class

Attributes:

position: cardinal number indicating the edge position

kind: type of node, could be 0-line , 1-split, 2-joint 3-station 4-end

5-out 6-start (overtaking are taking place just here)

"""

def __init__(self, position, kind, nodes_in, nodes_out):

self.position = position

self.kind= kind

self.nodes_in= nodes_in

self.nodes_out=nodes_out

class train(object):

"""Here we construct the train class

Attributes:

starting_position: where the train starts.

starting_time: when it enters in the rail

ending_time: when it gets out from the rail

category: train category (linked to the path so far)

station_stop= a flag, it is one when it stops at a station, it turns 0

when it leaves

"""

def __init__(self, position, time, category, delay):

self.starting_position= position

self.starting_time= time

self.ending_time= 0

self.category= category

self.station_stop= 0 #flag

self.delay= delay

"""

def decision_move(node_to_update):

num_nodes_in = len(node_to_update.nodes_in)

if num_nodes_in == 1: # if the node is in a row of nodes

pos_train = node_to_update.nodes_in[0]

if trains_now[pos_train] != 0:

trains_now[node_to_update.position] = trains_now[pos_train]

trains_now[pos_train] = 0
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else:

print(0)

"""

def ordering_nodes(ad_matrix, network_length):

final_list = []

ad_matrix_diag = ad_matrix.copy()

for i in range(network_length):

ad_matrix_diag[i,i] = 0

nodes_to_check = np.sum(ad_matrix_diag, axis = 1) == 0

checked_nodes = np.zeros((network_length), dtype=bool)

temp_ad_matrix = ad_matrix_diag.copy()

# Loop

for k in range(network_length):

if sum(checked_nodes) != network_length:

# if it is not empty

nodes_to_check = np.sum(temp_ad_matrix, axis = 1) == 0

positions_to_check = np.where(np.multiply(np.array(nodes_to_check == True),

np.array(checked_nodes == False)))

#

for i in range(len(positions_to_check)):

temp_vect = []

temp_vect = [positions_to_check[i] + 1]

checked_nodes[positions_to_check[i]] = True

for j in range(i+1,len(positions_to_check)):

if ad_matrix[:,positions_to_check[i]] == ad_matrix[:,positions_to_check[j]]:

temp_vect.append(positions_to_check[j] + 1)

checked_nodes[positions_to_check[j]] = True

final_list.append(temp_vect[0])

temp_ad_matrix = ad_matrix_diag.copy()

temp_ad_matrix[np.where(checked_nodes == True),:] = 0

temp_ad_matrix[:,np.where(checked_nodes == True)] = 0

return final_list

#decision process with the line edges

def e_line(pos,transition,nodes):

# check if a train is already on the next spot, if not we move the train

#to the next edge, otherwise it stops

if not nodes[pos].nodes_out[0] in transition:
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transition[pos] = nodes[pos].nodes_out[0]

else:

transition[pos] = pos

return transition

#decision process with the split edges

def e_split(pos,transition,nodes):

# check if there is an empty edge in the next ones

flag=0

for t in nodes[pos].nodes_out:

if not t in transition:

transition[pos]= t

flag=1

#if it does not find any empty edges it stops there

if flag==0:

transition[pos]= pos

return transition

#decision process with the join

def e_join(list_pos, transition,trains,nodes):

#list_pos: position of the existing trains on the same level

if len(list_pos)==0:

return transition

# check if a train is already on the next spot, if yes we stop all the trains

next_node=nodes[list_pos[0]].nodes_out[0]

if next_node in transition:

for x in list_pos:

transition[x]= x

trains[x].station_stop=1

else:

L=[trains[x].category for x in list_pos]

#list of categories of trains at the station

if len(which(L,max(L)))==1:

if max(L) in [0]: # there may be more categories that need to stop so [0,1,2,...]

if trains[list_pos[which(L,max(L))[0]]].station_stop == 0:

trains[list_pos[which(L,max(L))[0]]].station_stop = 1

transition[list_pos[which(L,max(L))[0]]] = list_pos[which(L,max(L))[0]]

else:

trains[list_pos[which(L,max(L))[0]]].station_stop = 0

transition[list_pos[which(L,max(L))[0]]] = next_node

else:

transition[list_pos[which(L,max(L))[0]]]=next_node

trains[list_pos[which(L,max(L))[0]]].station_stop=0

list_pos = np.delete(list_pos, which(list_pos,list_pos[which(L,max(L))[0]]))
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for x in list_pos: #the others stay there

transition[x]=x

trains[x].station_stop=1

elif max(L)>0:

fastest_trains=[list_pos[t] for t in which(L,max(L))]

times=[trains[x].starting_time for x in fastest_trains] #fastest=latest

winner=fastest_trains[which(times,min(times))[0]] #The most delayed goes head

transition[winner]=next_node

list_pos = np.delete(list_pos, which(list_pos,winner))

trains[winner].station_stop=0

for x in list_pos: #the others stay there

transition[x]=x

trains[x].station_stop=1

elif max(L)==0:

stopped_trains=[t for t in list_pos if trains[t].station_stop==1 ]

times=[trains[t].starting_time for t in stopped_trains]

winner=stopped_trains[which(times,min(times))[0]] #The most delayed goes head

transition[winner]=next_node

list_pos= np.delete(list_pos, which(list_pos,winner))

trains[winner].station_stop=0

for x in list_pos: #the others stay there

transition[x]=x

trains[x].station_stop=1

return transition

def e_enter(list_pos, transition,trains,nodes):

if not list_pos:

return transition

else:

# check if a train is already on the next spot, if yes we stop all the trains

next_node=nodes[list_pos[0]].nodes_out[0]

if next_node in transition:

for x in list_pos:

transition[x] = x

else:

L=[trains[x].category for x in list_pos]

#list of categories of trains at the station

if len(which(L,max(L)))==1:

transition[list_pos[which(L,max(L))[0]]]=next_node

list_pos= np.delete(list_pos, which(L,max(L))[0])

for x in list_pos: #the others stay there

transition[x]=x

else:

fastest_trains=[list_pos[t] for t in which(L,max(L))]
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times=[trains[x].starting_time for x in fastest_trains] #fastest=latest

winner=fastest_trains[which(times,min(times))[0]]

#The most delayed goes ahead

transition[winner]=next_node

list_pos= np.delete(list_pos, which(list_pos,winner))

for x in list_pos: #the others stay there

transition[x]=x

return transition

def new_move(trains_now,nodes,ord_nodes,network_length,

prob_stop_anywhere,prob_stop_station):

transition=[0 for x in range(network_length+1) ]

#we initialize the transition vector, then we fill it following the

#ord_nodes which starts from the bottom

for curr_pointer in ord_nodes:

list_pos=[]

for i in curr_pointer:

curr_train=trains_now[i]

if curr_train: #it is true if there is a train

list_pos= list_pos+[i]

if len(list_pos)==0: #means there are no trains here

continue

else:

node_kind=nodes[list_pos[0]].kind #they have all the same kind

if node_kind==0 or node_kind==2: #Just one node here

if np.random.rand() < prob_stop_anywhere:

transition[list_pos[0]] = list_pos[0]

continue

else:

transition=e_line(list_pos[0],transition,nodes)

elif node_kind==1: #Just one node here

if np.random.rand() < prob_stop_anywhere:

transition[list_pos[0]] = list_pos[0]

continue

else:

transition=e_split(list_pos[0],transition,nodes)

elif node_kind==3:

for i in list_pos:

if np.random.rand() < prob_stop_station:
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transition[i] = i

trains_now[i].station_stop=1

list_pos = np.delete(list_pos,which(list_pos,i))

transition=e_join(list_pos, transition,trains_now,nodes)

elif node_kind==4: #we can change that later if we want cause delays

if np.random.rand() < prob_stop_anywhere:

transition[list_pos[0]] = list_pos[0]

continue

else:

transition[list_pos[0]]=0

elif node_kind==6:

transition=e_enter(list_pos, transition,trains_now,nodes)

return transition

#We take out from our system the trains i for x in list_pos:f they end their path

def store(trains_now,trains_old, time):

train_exit=trains_now[0]

if train_exit: #if there are trains in the exit position

train_exit.ending_time=time

trains_old.add(trains_now[0])

trains_now[0]=0

return trains_now, trains_old

def new_train(pos,trains_now,time,category,train_delay):

#before check that the position it’s empty

trains_now[pos]=train(pos,time,category,train_delay)

return trains_now

def refresh(trains_now,transition,network_length):

#refresh the trains_now list

new=[0 for x in range(network_length+1)]

for t in range(network_length+1):

new[transition[t]]=trains_now[t]

return new

#main function

def railtrack(ad_matrix,time_steps,prob_inject,lambda_delay,

prob_stop_anywhere,prob_stop_station):

network_length = ad_matrix.shape[0]

#first we generate the nodes vector:

nodes=generate_nodes(ad_matrix,network_length)

#We order the nodes by priority for making decision,

#starting from the end of the rail
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ord_nodes=ordering_nodes(ad_matrix, network_length)

#Here we initialize the trains in the network and

#a store for the trains that were in the network

trains_now=[0 for x in range(network_length+1) ]

#A vector containing all the trains (as classes) which are on the network,

#the zero position are for the trains getting out

trains_old=set() #Trains that were in the rail

matrix_of_trains=[[0 for x in range(network_length)] for x in range(time_steps)]

#output matrix for the csv

#here we keep track of the transition by one state to another (time is discrete)

transitions=[0 for x in range(time_steps)] #One vector per time step

starting_edges = ord_nodes[-1]

for t in range(time_steps):

transitions[t]=new_move(trains_now,nodes,ord_nodes,network_length,

prob_stop_anywhere,prob_stop_station)

trains_now=refresh(trains_now,transitions[t],network_length)

trains_now, trains_old=store(trains_now,trains_old, t)

for edge in starting_edges:

if trains_now[edge]==0 and np.random.rand()<prob_inject:

train_type = np.random.randint(2)

train_delay = np.random.poisson(lambda_delay)

trains_now = new_train(edge,trains_now,t-train_delay,train_type,train_delay)

#we save the trains positions and categories at each step

for i in range(network_length): #We avoid the first entry that is the OUT one

if trains_now[i+1]==0: #Empty node

matrix_of_trains[t][i]=0

else: #if it is a train

matrix_of_trains[t][i]=trains_now[i+1].category+1

#We add one because our category start from zero

return trains_old,trains_now,transitions,matrix_of_trains

#Output of all the trains arrived, with starting time,

#ending_time, initial delay and category

def single_matrix_output(ad_matrix,output_length,prob_inject,lambda_delay,

prob_stop_anywhere,prob_stop_station):

network_length = ad_matrix.shape[0]

#first we generate the nodes vector:

nodes=generate_nodes(ad_matrix,network_length)

#We order the nodes by priority for making decision, starting from the end of the rail
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ord_nodes=ordering_nodes(ad_matrix, network_length)

#Here we initialize the trains in the network and a store for the trains that were in the network

trains_now=[0 for x in range(network_length+1) ]

#A vector containing all the trains (as classes) which are on the network,

#the zero position are for the trains getting out

trains_old=set() #Trains that were in the rail

matrix_of_trains=[[0 for x in range(4)] for x in range(time_steps)]

#output matrix for the csv

#here we keep track of the transition by one state to another (time is discrete)

transitions=[0 for x in range(time_steps)] #One vector per time step

starting_edges = ord_nodes[-1]

while len(trains_old)<output_length:

transitions[t]=new_move(trains_now,nodes,ord_nodes,network_length,

prob_stop_anywhere,prob_stop_station)

trains_now=refresh(trains_now,transitions[t],network_length)

trains_now, trains_old=store(trains_now,trains_old, t)

for edge in starting_edges:

if trains_now[edge]==0 and np.random.rand()<prob_inject:

train_type = np.random.randint(2)

train_delay = np.random.poisson(lambda_delay)

trains_now = new_train(edge,trains_now,t-train_delay,train_type,train_delay)

counter=0

for i in trains_old: #We save in a matrix all the caracteristic of the arrived trains

matrix_of_trains[counter]=[i.starting_time,i.ending_time,i.delay,i.category]

counter+=1

return matrix_of_trains

def which(listone,condizione):

return [index for index, item in enumerate(listone) if item == condizione]

def check(time_step,prob_inject):

lambda_pois = 1

prob_stop_station = 0.05

prob_stop_anywhere = 0.005

a,b,c,matrix=railtrack(ad_matrix,time_step,prob_inject,lambda_pois,

prob_stop_anywhere,prob_stop_station)

b1=[x.ending_time-x.starting_time for x in a if x.category==1]

b2=[x.ending_time-x.starting_time for x in a if x.category==0]

return np.histogram(b1,10), np.histogram(b2,10), np.mean(b1), np.mean(b2)
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def outputcsv(time_step):

a,b,c,matrix_output=railtrack(ad_matrix,17,time_step)

import csv

with open("output.csv","wb") as csvfile:

outp = csv.writer(csvfile, delimiter = ",")

for i in range(time_step):

outp.writerow(matrix_output[i])

return

’’’

Code in Python2:

A.2 Second Appendix: Perl code for Signalling Dynamics

1 #!/usr/bin/perl - Tw

2

3 use strict;

4 use Math::Trig;

5

6 my $N = 10; # number of trains

7 my $L = 100; # length of line (number of signals)

8 my $T = 30; # total time to integrate over

9 my $dt = 0.01; # timestep

10

11 my $d = 0.1; # train length

12 my $h = 0.3; # visibility distance for next signal

13

14 my ($v0 ,$v1 ,$v2 ,$v3) # desired speed for each signal aspect

15 = (0.0 ,1.0 ,1.8 ,2.0);

16 my $a0 = 3; # max acceleration

17 my $vscl = 0.1; # velocity scale for acceleration

18

19

20 my $maxits = $T/$dt;

21

22 my (@x,@v,@sigma ,$dx ,$dv);

23 my (@s);

24 my @train;

25

26 for (my $n=0;$n <$N;$n++) {

27 $x[$n] = 1*$n +0.99;

28 $v[$n] = 0;

29 $sigma[$n] = 1;

30 local *FILE;

31 open FILE , ">train$n.dat";

32 push(@train ,*FILE);

33 }

34

35 for (my $a=0;$a <$L;$a++) {
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36 $s[$a] = 0;

37 }

38

39 open POS , ">position.dat";

40

41 for (my $i=0;$i <$maxits;$i++) {

42

43 for (my $n=0;$n <$N;$n++) {

44 if (int($x[$n])+1 - $x[$n] < $h) {

45 $sigma[$n] = $s[int($x[$n ])+1];

46 }

47 $dx=$dt*$v[$n];

48 $dv=$dt*&Accn( $v[$n], $sigma[$n], $x[$n]-int($x[$n]) );

49 $x[$n] += $dx;

50 $v[$n] += $dv;

51 }

52

53 for (my $a=0;$a <$L;$a++) {

54 my $tmp = 3;

55 for (my $n=0;$n <$N;$n++) {

56 if ($x[$n]>$a && int($x[$n])-$a <$tmp) {

57 $tmp = int($x[$n])-$a;

58 } else {

59 }

60 if ($x[$n]>$a+$d && int($x[$n]-$d)-$a <$tmp) {

61 $tmp = int($x[$n]-$d)-$a;

62 }

63 }

64 $s[$a]=$tmp;

65 }

66

67 for (my $n=0;$n <$N;$n++) {

68 my $fh = $train[$n];

69 printf $fh "%g %g %g %g\n",

70 $i*$dt , $x[$n], $v[$n], $sigma[$n];

71 }

72

73 printf POS "%g %g %g %g %g %g %g %g %g %g %g\n", $i*$dt , @x;

74

75 }

76

77 close POS;

78

79 for (my $n=0;$n <$N;$n++) {

80 close $train[$n];

81 }

82

83 sub Accn {

84 my ($u,$sigma ,$delta )=@_;

85 return $a0*tanh ((& Vdes($sigma)-$u)/ $vscl);

86 }

87

88 sub Vdes {

89 my $s = @_[0];
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90 my %speed = (

91 0 => $v0 ,

92 1 => $v1 ,

93 2 => $v2 ,

94 3 => $v3 ,

95 );

96 return $speed{$s};

97 }

A.3 Third appendix: Code in Mosel modelling language to
be solved by Xpress for Mixed Integer Programming

‘‘‘Mosel

model "esgi-1"

version 1.862

uses "mmxprs", "mmsheet", "mmsystem"

declarations

! large constant

MM = 1000

! index sets

EVENTS : set of integer

TRAINS : set of integer

STATIONS : set of string

CLASSES = 1..2

! track data

HW_MIN : array (STATIONS) of integer ! min headway time in each station

TRAVEL_MIN : array(STATIONS, STATIONS, CLASSES) of real ! min travel times or dwell times

! train data

t_sigid : array (TRAINS) of string ! train signal id ("2M23")

t_class : array (TRAINS) of integer ! class of train

t_dir : array (TRAINS) of integer ! direction of train (0 = up = to Pad, 1 = down = from Pad)

! events

e_plan : array (EVENTS) of real ! scheduled time of event

e_public: array (EVENTS) of integer ! is plan publicly advertised?

e_type : array (EVENTS) of integer ! 0 ... arrival; 1 ... departure

e_train : array (EVENTS) of integer ! train id of event

e_stn : array (EVENTS) of string ! station id of event

e_next : array (EVENTS) of integer ! next event on the train
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! decision variables

e_time : array (EVENTS) of mpvar ! newly scheduled times for events

prec : array (EVENTS,EVENTS) of mpvar ! which event precedes which

! objective

TotalDelay : linctr

end-declarations

! add headway constraints for two events

procedure add_headway(e1, e2 : integer, hwmin : real)

! need to know which event precedes which

create(prec(e1,e2))

create(prec(e2,e1))

prec(e1,e2) is_binary

prec(e2,e1) is_binary

prec(e1,e2) + prec(e2,e1) = 1

! headway constraints

Headway(e1,e2) := e_time(e2) - e_time(e1) >= hwmin - MM * prec(e2,e1)

Headway(e2,e1) := e_time(e1) - e_time(e2) >= hwmin - MM * prec(e1,e2)

end-procedure

! headway constraints for two trains on a track segment

procedure add_two_headways(e1, e2 : integer)

! check it’s departures

if (e_type(e1) <> 1 or e_type(e2) <> 1) then

writeln("Events ", e1, ", ", e2, " cannot be headwayed: not departures!")

exit(1)

end-if

! check stations

stn1 := e_stn(e1)

if (e_stn(e2) <> stn1) then

writeln("Events ", e1, ", ", e2, " cannot be headwayed: different stations!")

exit(1)

end-if

e3 := e_next(e1)

e4 := e_next(e2)

stn3 := e_stn(e3)

if (e_stn(e4) <> stn3) then

writeln("Events ", e1, ", ", e2, " cannot be headwayed: different departure lines!")

exit(1)

end-if
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! add the headway constraints

add_headway(e1, e2, HW_MIN(stn1))

add_headway(e3, e4, HW_MIN(stn3))

! preserve precedence

Prec(e1, e2, e3, e4) := prec(e1, e2) = prec(e3, e4)

end-procedure

! generating travel/dwell time constraints

procedure add_travel(e1, e2 : integer)

! check train

! trn := e_train(e1)

! if (e_train(e2) <> trn) then

! writeln("Events ", e1, ", ", e2, " cannot be travel-separated: different trains!")

! exit(1)

! end-if

TravelMin(e1, e2) := e_time(e2) - e_time(e1) >= TRAVEL_MIN(e_stn(e1),e_stn(e2),t_class(e_train(e1)))

end-procedure

writeln("Reading in data: ", gettime)

! data init

initializations from "topology.dat"

HW_MIN

TRAVEL_MIN

end-initializations

initializations from "mmsheet.xlsx:events.xlsx"

e_train as "[a2:g119](1,2)"

e_stn as "[a2:g119](1,3)"

e_type as "[a2:g119](1,4)"

e_plan as "[a2:g119](1,5)"

e_public as "[a2:g119](1,6)"

e_next as "[a2:g119](1,7)"

end-initializations

initializations from "mmsheet.xlsx:trains.xlsx"

t_sigid as "[a2:d13](1,2)"

t_class as "[a2:d13](1,3)"

t_dir as "[a2:d13](1,4)"

end-initializations

writeln("Generating constraints: ", gettime)
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! generate travel-time constraints and dwell-time constraints for each train run

forall(e in EVENTS) do

create(e_time(e))

if (exists(e_next(e)) and e_next(e) <> 0) then

add_travel(e, e_next(e))

end-if

end-do

! headway constraints

forall(e1 in EVENTS, e2 in EVENTS |

(e_train(e1) <> e_train(e2)) and

(e_stn(e1) = e_stn(e2)) and

(e_type(e1) = 1) and

(e_type(e2) = 1) and

(t_class(e_train(e1)) = t_class(e_train(e2)))) do

if (exists(e_next(e1)) and exists(e_next(e2))) then

en1 := e_next(e1)

en2 := e_next(e2)

if (exists(e_stn(en1)) and exists(e_stn(en2))) then

if (e_stn(en1) = e_stn(en2)) then

add_two_headways(e1, e2)

end-if

end-if

end-if

end-do

! don’t want to run before scheduled time

forall(e in EVENTS) do

e_time(e) >= e_plan(e)

end-do

!!!!!!!!!!!! boundary conditions

!mock delay

e_time(37283) >= 10

e_time(45142) >= 34

!prec(37287,45107)=1

!prec(37289,45109)=1

!prec(37283,45103)=1

!prec(37285,45105)=1

!!!!!!!!!!!!

! objective

TotalDelay := sum(e in EVENTS | exists(e_plan(e))) (e_time(e) - e_plan(e))

writeln("Optimising: ", gettime)
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! minimise

minimise(TotalDelay)

write("Finished: ", gettime, ": ")

case getprobstat of

XPRS_OPT: writeln("optimal")

XPRS_INF: writeln("infeasible")

XPRS_UNB: writeln("unbounded")

XPRS_UNF: writeln("unfinished")

else

writeln("unexpected problem status!")

end-case

! results

writeln("Total delay: ", getobjval)

!! forall (e in EVENTS | exists(e_time(e)))

!! writeln("Event ", e, ": time ", getsol(e_time(e)))

forall(t in TRAINS) do

writeln; writeln(t_sigid(t),"\tarr\tdep")

forall(e in EVENTS | e_train(e) = t) do

write(e_stn(e))

if (e_type(e) = 1) then

writeln("\t\t", getsol(e_time(e)), "\t(+", getsol(e_time(e)) - e_plan(e), ")")

else

writeln("\t", getsol(e_time(e)), "\t\t(+", getsol(e_time(e)) - e_plan(e), ")")

end-if

end-do

end-do

end-model

‘‘‘

A.4 Fourth appendix: Code in R for A Bayesian model of
route status

‘‘‘

# Resonate Bayesian Inference Model

# By Yuanwei Xu (yuanwei.xu@imperial.ac.uk)
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# x: vector of ratings

# shape1, shape2: parameters of the Beta prior of the ratings

# shape1 = shape2 = 1 corresponds to uniform prior between 0 and 1

log_prior <- function(x, shape1, shape2)

sum(dbeta(x, shape1, shape2, log = TRUE))

# vt: vector of relative lateness

# vr: vector of ratings

# set_j, set_s: index set of junctions and stations

# mu_j, mu_s, mu_t: the parameters associated with expoinential distributions of normal

# operational service delay, for junctions, stations and terminal

log_likelihood <- function(vt, vr, set_j, set_s, mu_j, mu_s, mu_t){

mu <- vector("numeric", length(vr))

for(i in seq_along(vr)){

mu[i] <- dplyr::case_when(

i %in% set_j ~ mu_j,

i %in% set_s ~ mu_s,

i == length(vr) ~ mu_t

)

}

lambda <- 1/vr - vr

# Use the result here https://people.maths.bris.ac.uk/~mb13434/sumexp.pdf

foo <- dexp(vt,mu)/mu

bar <- dexp(vt,lambda)/lambda

out <- sum(log(mu * lambda * (foo/(lambda-mu) + bar/(mu-lambda))))

out

}

# Posterior density

log_posterior <- function(vr, vt,

set_j, set_s, mu_j, mu_s, mu_t, shape1 = 1, shape2 = 1){

log_prior(vr, shape1, shape2) + log_likelihood(vt, vr, set_j, set_s, mu_j, mu_s, mu_t)

}

# The proposal changes one component of vr using a normal distribution with

# current value as mean and standard deviation 0.1

proposal <- function(vr, s = 0.1){

prop <- vr

pos <- sample(length(vr), 1)

r <- rnorm(1, mean = vr[pos], sd = s)

while(r<0 || r>1) # make sure r is in range

r <- rnorm(1, mean = vr[pos], sd = s)
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prop[pos] <- r

list(val = prop, pos = pos)

}

# Acceptance ratio of the MCMC sampler

acc_ratio <- function(vr_new, vr_curr, ...){

log_posterior(vr_new, ...) - log_posterior(vr_curr, ...)

}

num_sections <- 10

set_j <- c(1, 3, 5, 7, 9)

set_s <- c(2, 4, 6, 8)

mu_j <- 2

mu_s <- 1

mu_t <- 0.5

vt <- c(0.5, 1, 0.5, 1, 0.5, 1, 0.5, 1, 0.5, 2)

vr_init <- rep(0.5, num_sections)

iters <- 20000

out <- matrix(nrow = iters, ncol = num_sections)

pb <- txtProgressBar(min = 0, max = iters, initial = 0, style = 3)

vr_curr <- vr_init

for(i in seq.int(iters)){

setTxtProgressBar(pb,i)

prop <- proposal(vr_curr)

vr_new <- prop$val

if(log(runif(1)) <

acc_ratio(vr_new, vr_curr, vt, set_j, set_s, mu_j, mu_s, mu_t)){

vr_curr <- vr_new

out[i, ] <- vr_curr

}

else

out[i, ] <- vr_curr

}

# Plot historgrams overlayed by mean

par(mfrow=c(2,5))

for(i in 1:num_sections){

hist(out[,i], main = substitute(paste("Section ID: ", a), list(a=i)))

abline(v = mean(out[,i]), col = "red", lwd = 2)

}

library(tidyverse)

out <- as.data.frame(out)
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names(out) <- 1:num_sections

out %>%

gather(section_id, rating, convert = TRUE) %>%

mutate(section_id = as.factor(section_id)) %>%

ggplot(aes(section_id, rating)) +

geom_boxplot()

delay <- data.frame(section_id = 1:num_sections, lateness = vt)

delay %>%

ggplot(aes(as.factor(section_id), lateness)) +

geom_point() +

ylab("relative lateness")

‘‘‘
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